
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 7 Issue 4 Ser. I ǁ 2019 ǁ PP. 85-92

www.ijres.org 85 | Page

Fluffy Based Programming Cost Assessment for Non Algorithmic

Methodology

Bibhuti Bhusan Bhutia,Madan Mohan Sahu, Kedarnath Hota, Sitakanta Nayak
Department of Mechanical engineering, Gandhi Institute For Technology (GIFT), Bhubaneswar

Abstract: Cost estimation is one of the most challenging tasks in project management. It is to accurately

estimate needed resources and required schedules for software development projects. The software estimation

process includes estimating the size of the software product to be produced, estimating the effort required,

developing preliminary project schedules, and finally, estimating overall cost of the project. Effort is a function

of size. The software industry does not estimate projects well. In this paper we have represented size in KLOC

as a Fuzzy number. A new model is presented using fuzzy logic to estimate effort required in software

development.

Keywords: estimation; budget; effort; LOC; FP.

I. INTRODUCTION
Out of the three principal components of cost i.e., hardware costs, travel and training costs, and effort costs, the

effort cost is dominant. Software cost estimation starts at the proposal state and continues throughout the life

time of a project.

There are several techniques of software cost estimation:

• Algorithm Cost Model

• Expert Judgments

• Estimation by Analogy

• Top-down estimation

• Bottom-up estimation

Expert Judgment Method:

Expert judgment techniques involve consulting with software cost estimation expert or a group of the experts to

use their experience and understanding of the proposed project to arrive at an estimate of its cost[1].

Estimating by Analogy

Estimating by analogy means comparing the proposed project to previously completed similar project where the

project development information id known. Actual data from the completed projects are extrapolated to estimate

the proposed project. This method can be used either at system-level or at the component-level[1].

Top Down Estimating Method

Top-down estimating method is also called Macro Model. Using top-down estimating method, an overall cost
estimation for the project is derived from the global properties of the software project, and then the project is

partitioned into various low-level components[1].

Bottom up Estimating Method

Using bottom-up estimating method, the cost of each software components is estimated and then combine the

results to arrive at an estimated cost of overall project. It aims at constructing the estimate of a system from the

knowledge accumulated about the small software components and their interactions[1].

Algorithmic Method

The algorithmic method is designed to provide some mathematical equations to perform software estimation.
These mathematical equations are based on research and historical data and use inputs such as Source Lines of

Code (SLOC), number of functions to perform, and other cost drivers[1].

DIRECT APPROACH

Source lines of code (SLOC) is a software metric used to measure the size of a software program by counting

the number of lines in the text of the program's source code. SLOC is typically used to predict the amount of

effort that will be required to develop a program, as well as to estimate programming productivity or

Fluffy Based Programming Cost Assessment for Non Algorithmic Methodology

www.ijres.org 86 | Page

maintainability once the software is produced. There are two major types of SLOC measures: physical SLOC

(LOC) and logical SLOC (LLOC). Specific definitions of these two measures vary, but the most common

definition of physical SLOC is a count of lines in the text of the program's source code including comment lines.
Blank lines are also included unless the lines of code in a section consists of more than 25% blank lines. Logical

SLOC attempts to measure the number of executable "statements", but their specific definitions are tied to

specific computer languages[3].

The COCOMO cost estimation model is used by thousands of software project managers, and is based

on a study of hundreds of software projects. Unlike other cost estimation models, COCOMO is an open model.

COCOMO estimates are more objective and repeatable than estimates made by methods relying on proprietary

models. The most fundamental calculation in the COCOMO model is the use of the Effort Equation to estimate

the number of Person-Months required to develop a project. COCOMO has cost drivers that assess the project,

development environment, and team to set each cost driver. The cost drivers are multiplicative factors that

determine the effort required to complete your software project. number of executable "statements", but their

specific definitions are tied to specific computer languages[2].

Effort is calculated by

Effort= a*
Where ‘a’ and ‘b’ are empirically determined constants. Size is length of the code in KLOC.

Type of project A B

Organic 3.2 1.05

Semi detached 3.0 1.12

Embedded 2.8 1.20

The Effort Adjustment Factor in the effort equation is simply the product of the effort multipliers corresponding

to each of the cost drivers.

For example, if your project is rated Very High for Complexity (effort multiplier of 1.34), and Low for

Language & Tools Experience (effort multiplier of 1.09), and all of the other cost drivers are rated to be

Nominal (effort multiplier of 1.00), the EAF is the product of 1.34 and 1.09..

The COCOMO schedule equation predicts the number of months required to complete your software project.

The duration of a project is based on the effort predicted by the effort equation:

Duration=3.67*(Effort)SE

Where
Effort is the effort from the COCOMO effort equation.

SE is the schedule equation exponent derived from the cost Drivers.

The Man per month is calculated by

Average staffing = (Person-Months) / (Duration)

INDIRECT APPROACH

Function Point Analysis (FPA):

It begins with the decomposition of a project or application into its data and transactional functions.

The data functions represent the functionality provided to the user by attending to their internal and external

requirements in relation to the data, whereas the transactional functions describe the functionality provided to

the user in relation to the processing this data by the application[4].
Each function is classified according to its relative functional complexity as low, average or high. The

data functions relative functional complexity is based on the number of data element types (DETs) and the

number of record element types (RETs). The transactional functions are classified according to the number of

file types referenced (FTRs) and the number of DETs. The number of FTRs is the sum of the number of ILFs

and the number of EIFs updated or queried during an elementary process.

The data functions are:

1. Internal Logical File (ILF)

2. External Interface File (EIF)

The transactional functions are:

1. External Input (EI)

2. External Output (EO)

Fluffy Based Programming Cost Assessment for Non Algorithmic Methodology

www.ijres.org 87 | Page

3. External Inquiry (EI)

The actual calculation process consists of three steps:

1.Determination of unadjusted function points(UFP).
2.Calculation of value of adjustment factor(VAF).

3.Calculation of final adjusted functional points.

Evaluation of Unadjusted FP:

The unadjusted Functional points are evaluated in the following manner

UFP= ∑∑Fij*Zij , for j= 1 to 3 and i = 1 to 5, where Zij denotes count for component i at level (low, average or

high) j, and Fij is corresponding Function Points.

Evaluation of Value Adjusted FP:

Value Adjustment Factor (VAF) is derived from the sum of the degree of influence (DI) of the 14 general

system characteristics (GSCc). General System characteristics are:

1. Data communications

2. Distributed data processing
3. Performance

4. Heavily utilized configuration

5. Transaction rate

6. On-line data entry

7. End-user efficiency

8. On-line update

9. Complex processing

10. Reusability

11. Installations ease

12. Operational ease

13. Multiple sites/organizations

14. Facilitate change

Function points can be converted to Effort in Person Hours. Numbers of studies have attempted to

relate LOC and FP metrics. The average number of source code statements per function point has been derived

from historical data for numerous programming languages. Languages have been classified into different levels

according to the relationship between LOC and FP. Programming language levels and average numbers of

source code statements per function point.

Fuzzy Logic:

Fuzzy logic is used to find fuzzy functional points and then the result is defuzzified to get the

functional points and hence the size estimation in person hours. Triangular fuzzy numbers are used to represent

the linguistic terms in Function Point Analysis (FPA) complexity matrixes. A fuzzy set is characterized by a
membership function, which associates with each point in the fuzzy set a real number in the interval [0,1], called

degree or grade of membership. The membership function may be triangular, trapezoidal, parabolic etc. Fuzzy

numbers are special convex and normal fuzzy sets, usually with single modal value, representing uncertain

quantitative information. A triangular fuzzy number (TFN) is described by a triplet (α ,m, β), where m is the

modal value, α and β are the right and left boundary respectively.

1.Triangular Fuzzy numbers, TFN (α, m, β), α ≤ m, β ≥ m.

Fluffy Based Programming Cost Assessment for Non Algorithmic Methodology

www.ijres.org 88 | Page

The membership function (μ(x)) for which is defined as:

0 , x

 x - / m - , x m

µx- x / - m , mx

 , x≥

II. TRAPEZOIDAL FUZZY LOGIC
Defined by its lower limit a, its upper limit d, and the lower and upper limits of its nucleus or Kernel b and c

respectively:

0 , (x ≤ a) or (x ≥ d)

T(x) = (x - a) / (b-a) ,x (a, b)
1 ,x (b, c)
(d - x) / (d-c) ,x (c, d)

Fig.: Trapezoidal Fuzzy

The five major components mentioned above, they have to be rated as either Low, Average, or High.

Ranking is commonly based on File Types Referenced, Data Element Types and Record Element Types. File

Types Referenced (FTRs) represents the total number of internal logical files (ILFs) maintained, read, or

referenced, and the external interface files read or referenced by the EI/EO transaction. Data Element Type

(DET) can be defined as unique user recognizable non-recursive fields including foreign key attributes that are

maintained on ILF/EIF. Record element type (RET) is a subgroup of data elements within an ILF/EIF. For each

of the components belonging to Transactional functions, the ranking is based on the number of files updated or

referenced (FTRs) and number of data element types (DETs).For the data components viz., Internal Logical

Files (ILF) and External Interface Files (EIF), ranking is based on the number of Data Element Types (DETs)

and number of Record Element Types (RETs).
Based on the ratings the domain character values are fuzzified using the Triangular membership

function. The value thus obtained is called membership function output, whose domain is specified, usually

the set of real numbers, and whose range is the span of positive numbers in the closed interval [0, 1]. Each

numerical value of the domain is assigned a specific value and 0 represents the smallest possible value of the

membership function, while the largest possible value is 1.

Defuzzification:

Defuzzification means the fuzzy to crisp conversions. The fuzzy results generated cannot be used as

such to the hence it is necessary to convert the fuzzy quantities into crisp quantities for further processing. This

can be achieved by using defuzzification process. The defuzzification has the capability to reduce a fuzzy to a

crisp single-valued quantity or as a set, or converting to the form in which fuzzy quantity is present.

Defuzzification can also be called as “rounding off” method. Defuzzification reduces the collection of
membership function values in to a single sealer quantity. Defuzzification is the process of producing a

quantifiable result in fuzzy logic, given fuzzy sets and corresponding membership degrees. It will have a

number of rules that transform a number of variables into a fuzzy result, that is, the result is described in terms

of membership in fuzzy sets. The defuzzification is applied to the value that had been obtained from the

fuzzification process. The fuzzified output has to be defuzzified into the real number so that it will give the

effort that has been needed for the cost estimation.

Fluffy Based Programming Cost Assessment for Non Algorithmic Methodology

www.ijres.org 89 | Page

VARIOUS CRITERIONS FOR ASSESSMENT OF SOFTWARE COST ESTIMATION MODELS

There are 4 important criterions for assessment of software cost estimation models:

1. VAF (Variance Accounted For) (%):

VAF (%) =

2. Mean absolute Relative Error (%):

Mean absolute error (%) = * 100

3. Variance Absolute Relative Error (%):

VAR (%) = * 100

4. Pred (n): Prediction at level n((Pred (n)):

Var x =

III. EXPERIMENTAL RESULTS
Performance of the effort can be predicted based on the MARE and Prediction n method.The estimated

effort of LOC is compared with the actual effort of LOC in the first graph.The estimated effort of FP is

compared with the actual effort of FP in the second graph.The MARE of LOC and FP is compared in the third

graph.It has been clearly identified that Function point based estimation is better than the LOC estimation.

The Table 1 indicates the lines of code with the actual effort and the estimated effort using the cocomo

model. Both MARE analysis and Prediction n method has been applied to the direct approach and the indirect

approach.The actual effort is the original effort and the estimated effort is the one which has been done in the

estimation process using the cocomo method.

.LOC Actual effort Estimated effort

48 1107.3 1465.83

50 84 145

39 72 112

164 246 510

200 130 625

40.5 82.5 160.7

The next table shows the function point with actual effort and the estimate effort.

LOC in FP Actual effort Estimated effort

15.23 40 52

10.1 12 36

17 50 67

20 60 83

18 52 73

22 90 105

Fluffy Based Programming Cost Assessment for Non Algorithmic Methodology

www.ijres.org 90 | Page

The graph shows the variation between the actual and estimated effort using LOC.

The following graph shows the variation between the actual and estimated effort using LOC in FP.

The MARE analysis is given as follows

Fluffy Based Programming Cost Assessment for Non Algorithmic Methodology

www.ijres.org 91 | Page

These graph shows the bar chart representing comparative analysis of actual effort with that of

the effort estimated using COCOMO, triangular and trapezoidal membership functions with relative error.

Effort in person months is scaled along with y-axis. Actual effort, COCOMO effort and effort obtained

using TAMF for size and effort obtained using TPMF for size, were represented for each sample

projects, which were taken along with x-axis.

IV. CONCLUSION

In this paper, we have proposed a new approach to estimate the software project cost. This approach is

based on fuzzy logic.In fuzzy logic approach datas are represented by fuzzy sets.In this investigation it is
projected to characterize the size of the project using Triangular Membership Function which gives superior

transition from one interval to another.A new fuzzy effort estimationmodel is proposed by using trapezoidal

function to dealwith the size and to generate fuzzy Membership Function and rules.After analyzing the results

attained by means of applying COCOMO, triangular and trapezoidal Membership Function models, it is

observed that the effort estimation of the proposed model isgiving more precise results than the other models.

Theeffort estimated by means of fuzzifying size usingTrapezoidal Membership Function is yielding better

estimate which is very nearer to the actual effort.

FUTURE WORK

From the experimental results, it is concluded that, by fuzzifying the size of the project using TPMF, it

can be proved that the resulting estimate impacts the effort.
The effort generated using the proposed model gives better result than that of using ordinal COCOMO. This

illustrates that by fuzzifying size using TPMF, the accuracy of effort estimation can be improved and the

estimated effort can be very close to the actual effort.

Moreover, by capturing the uncertainty of the initial data (estimates), one can monitor the behavior

(quality) of the cost estimates over the course of the software project. This facet adds up a new conceptual

dimension to the models of software cost estimation by raising awareness of the decision making with regard to

Fluffy Based Programming Cost Assessment for Non Algorithmic Methodology

www.ijres.org 92 | Page

the quality of the initial data needed by the model. This study can be extended by integrating with neural

networks. By using this extended approach with the standard COCOMO models, we can take advantage of the

features of neural network, such as learning ability and good interpretability. Therefore, a promising line of
future work is to extend to the neuro-fuzzy approach.

REFERENCES
[1]. M. Boraso, C. Montangero, and H. Sedehi, "Software cost estimation: An experimental study of model performances", tech. rep.,

1996.

[2]. O. Benediktsson, D. Dalcher, K. Reed, and M. Woodman, "COCOMO based effort estimation for iterative and incremental software

development", Software Quality Journal, vol. 11, pp. 265-281, 2003.

[3]. T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes, "Validation Meth-ods for calibrating software e_ort models", ICSE

'05:Proceedings of the 27
th
 international conference on Software engineering, (New York, NY, USA),,pp.587-595, ACM Press,

2005.

[4]. Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., Reifer, D. J., Steece,B.Software cost

estimation with COCOMO II. Prentice-Hall,Upper Saddle River, NJ, February 2000.

[5]. IFPUG. Function Point Counting Practices Manual: Release 4.0. International Function Point Users Group, Princeton Junction, NJ,

1994.

[6]. Alaa f. sheta," Estimation of the COCOMO Model Parameters Using Genetic Algorithm for NASA Software Projects", Journal of

Computer Science ,2(2):118-123,2006

[7]. Ali Idri, alain Abran and Laila Kijri, "COCOMO cost modeling using Fuzzy Logic", International conference on Fuzzy Theory and

technology At-lantic, 7New Jersy, March 2000.

[8]. Baiely,j.w Basili,"A Meta model for Software Development Resource Expenditure", Proc. Intl. Conference Software Egg.,pp : 107-

115,1981

[9]. Idri, A. and Abran, A.:"COCOMO Cost Model Using fuzzylogic”.

[10]. IFPUG. Function Point Counting Practices Manual: Release 4.0. International Function Point Users Group, PrincetonJunction, NJ,

1994.

